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ABSTRACT

The dead time in a Naval Training Pipeline is defined as time spent by enrolled
students doing things other than training. There are eight major categories of dead time
and their effect has been to decrease the utilization of personnel to under 70% in recent
times. Twenty-four courses for four years (1996-1999) have been selected for study. The
Academic Setbacks for course with CDP identifier 6400 has been chosen for initial work::-
and model building. The methods developed for this case will be applied to the others to
the extent possible. The exploratory analyses will seek to discover internal patterns of

setbacks. Failing this, the process will be declared as time homogeneous and in a steady

state.
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I. INTRODUCTION

A. PROBLEM PRESENTATION

The deadtime in a Naval Training Pipeline refers to situations in which students
are enrolled for training but not undergoing training. There are a number of reasons, e.g.,
waiting for a seat in a class, waiting for a transfer to the next training command or to the
fleet, waiting for discharge from Naval service, or having to temporarily come out of a
class once it has started. The deadtime issue has attracted more attention under the
current Navy environment in which cost cutting and manpower downsizing is
emphasized, especially since its effect has decreased the utilization of personnel to under
70% in recent times. Reducing deadtime is beneficial for both the Navy, which pays for

it, and the sailor who endures it

B. RESEARCH BACKGROUND AND PRIMARY QUESTION

Two studies are cited for background. Belcher (1999) considers student not-under
instruction time and reveals the impact and contribution of eight major categories of dead
time. Belcher’s document analyzes causes and recommends methods to decrease the time
awaiting instruction (AI), awaiting training (AT) and instruction interruption (II). In
another study, Rhoades (1998) suggests information systems for integrating the Navy’s
recruiting, training, and assignment in order to optimize the entire system.

These above studies identified deadtime and its cost to the Navy. Another

important issue is that of identifying those time periods during a course of instruction that




experience the beginning of deadtime. This thesis develops a method to identify these

deadtime bottlenecks.

C. THESIS OUTLINE

The next chapter, Methodology, introduces the foundation of Poisson regression.
The third chapter describes the given data. Chapter IV, Model Fitting, fits the Poisson
regression model to the selected data and calculates the deviance as' measure of goodness
of fit. The following Chapter V computes, interprets, and analyzes the output, and

reveals the usefulness of the output as well. Chapter VI concludes the work with some

recommendations.

D. EXPECTED BENEFITS OF THIS THESIS

Using a Poisson regression analysis, we intend to locate the worst deadtime
bottleneck in a particular course. To simplify the analysis, wé consider the Academic
Setbacks of course 6400 for model building and exploratory data analysis. The analysis
will reveal any deadtime bottlenecks that should be identified and considered for possible
administrative action. If there are no bottlenecks, we will declare the process as time
homogeneous and in a steady state, requiring no adjustment. The methodology used in

this study can be extended to other Navy courses to identify significant deadtime

categories.




II. METHODOLOGY

A. INTRODUCTION

Poisson regression analysis is appropriate for response variables that have non-
negative integer values: 0, 1, 2.... The Poisson distribution is used to describe the
response; the behavior of the mean value function in various categories is the goal of
modeling.

The occurrences of deadtime events of the type in our study are relatively rare.
Let’s examine the Academic Setback of the course 6400. The number of student
academic setbacks must be 0, 1, 2... the non-negative integer values. One student
academic setback is assumed to be independent of any other student academic setback.
The total number of academic setbacks for a single course are not large, but there are

many courses, and the overall problem becomes large.

B. POISSON DISTRIBUTION

The Poisson distribution has a single parameter; called lambda, A, which is the
average or expected number of events per unit of time, i.e. the mean p. Interestingly, the
variance of the Poisson distribution is also equal to A. The values possibly taken by the

Poisson random variable are the non negative integers.

The mathematical expression of the Poisson distribution for obtaining y events,

given that A events are expected, is




-2 Ay
P(Y = y)=< y,ﬂ 2.1

where Y = the Poisson random variable.
P = the probability of y events given a knowledge of A.

A = expected number of counts, i.e., the mean p.
e = the base of the natural logarithm (approximated by 2.71828).

y = user supplied input.

C. THE METHOD OF MAXIMUM LIKELIHOOD

The method of maximum likelihood for the estimation of statistical parameters is
the one used in this thesis. This method selects the value of A, based upon the data,
which maximizes the likelihood function of the observed results. A likelihood function
takes positive values. Often it is easier to work with the log-likelihood function than the
likelihood function itself. Since the logarithmic function is a monotonically increasing
function, the estimator that maximizes the log-likelihood function will maximize the

likelihood function as well. This log likelihood function takes negaﬁve values.

D. THE POISSON REGRESSION PROCEDURE

The Poisson regression procedure hypothesizes a model to explain the observed
data. The maximum likelihood method is used to estimate the parameters of the model.

The most general case of a Poisson regression (the saturated model) defines an

individual A for each data point in a sample of size N:




N -4 Vi
L(y;1)= [e /}] 22
i=] Vi

A Poisson regression model would define some relationship among the A;:

Ly, )= lﬂ[[e-;ﬁ’f’yi J 23

i=1 y!

and A, is estimated by y; in the saturated model.

E. THE MEASURES OF GOODNESS OF FIT

One measure of how closely the Poisson regression model fits the observed data is

called the deviance D(ﬂ:) for the regression model (Kleinbaum, page 503):

D(x)=-2 ln{L—(’v—/i—)} 2.4

L(y;4)
where L(y; l:) is the estimated likelihood of the proposed model,

and L(y;A) is that of the saturated model.

The better the Poisson regression model fits the observed data, the closer
L(y; A, )/ L(y;A) gets to one. Since both the numerator and denominator are maximum

likelihood estimators, the D(ﬂ:,) statistic is approximately a chi-square variate with N-K

degrees of freedom. K is the number of parameters in the model.
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III. STATISTICAL DESCRIPTION OF DATA

The given data include 24 courses from 1996 to 1999. Our first task is to explore
the selected data sets for their statistical properties. Table 3.1 reveals the structure of the
data for a single course, a single category of dead time raw data, which consist of eight

Table 3.1. The Abstract of Raw Data of Academic Setback from 1996 to 1999.

ENROLL CRSEL |CATEGOR
0BS [ 1y CIN CDP N v ABBRNM count| DAY
A-041- STBK ACAD RTRNG
1 1996 0010 6400 | 164 AS 1 114
0 CLSRM LACK READ SKL
A-041- STBK ACAD RTRNG
2 | 1936 0010 6400 | 164 AS  |CLSRM LACK READ SKL| ' 119
A-041- STBK ACAD WITHT
4
48 | 1996 0010 6400 | 164 BS  |areNG ADMIN 1 98
A0d1- STBK ACAD RTRNG
49 | 1997 0010 6400 | 164 AS |CLSRM LACK CMPRHN 1 120
SUBJ MATR
h041- STBK ACAD RTRNG
50 | 1997 0010 6400 | 164 AS |CLSRM LACK CMPRHN 1 14
SUBJ MATR
A-041- STBK ACAD WITHT
125 | 1997 0010 6400 | 164 AS  2rRNG ADMIN 1 97
A041 STBK ACAD RTRNG
126 | 1998 0010 6400 | 164 AS |CLSRM LACK CMPRHN 1 100
: SUBJ MATR
A041- STBK ACAD RTRNG
127 | 1998 0010 6400 | 164 AS |CLSRM LACK CMPRHN 1 65
SUBJ MATR
Ao041- STBK ACAD WITHT
152 | 1998 0010 6400 | 164 AS |RTRNG ADMIN 1 96
Ao041- STBK ACAD RTRNG
157 | 1999 0010 6400 | 164 AS |CLSRM LACK CMPRHN 1 97
SUBJ MATR




columns.

These eight columns contain: the fiscal year (ENROLLFY), the course
identification notatioﬁ (CIN), the category of deadtime (CATEGORY), the course
number (CDP), the course length (CRSELEN), the day number into the course (DAY) of
the event, the numbers of students entering deadtime on that day (COUNTS), and the
deadtime reason (ABBRNM). For simplification of the initial work and model building,
we selected the Academic Setback in CDP 6400. Therefore the CATEGORY, the CDP
and the CRSELEN are AS, 6400 and 164 days and are fixed in this example. We focus
on the DAY and the CQUNTS of the events.

Table 3.2 organizes the information into how many events happened for each day
into the course. For instance, four students received academic setbacks on the 14% day of
the course, one student on the 99" day, but no students on the 19th day, etc. If there was
no student setback on a day, such as the 19", the original data set did not include a record
for DAY = 19. Thus the day 19 does not appear. We did find some students having a

setback after 164 days. These are viewed as miss-entries and are ignored.

Table 3.3 records the frequency of the various COUNTS. It records the number
of days for each category of COUNTS. For example, out of 164 days, there were no
setbacks declared on 70 of the days and there were exactly one on 35 of the days, etc. The
variable COUNTS in Table 3.3 takes on eight values: zero, one, two, three, four, five, six

and seven. The total proportion of counts for one, two and three is 49.38%, while the

total for four, five, six and seven is 7.93%.



Table 3.2. Frequency Table by DAY.

DAYS | Frequency | Percent |DAYS| Frequency | Percent |DAYS| Frequency | Percent
(COUNTS) (COUNTS) (COUNTS)
14 4 1.80 59 4 1.80 59 X 0.45
15 4 1.80 61 6 2.70 100 3 1.35
16 3 1.35 62 1 0.45 101 2 0.45
17 1 0.45 63 3 1.35 102 1 0.45
18 1 0.45 64 1 0.45 103 2 0.90
20 7 3.15 65 2 0.90 104 1 0.45
21 1 0.45 67 2 0.90 105 2 0.90
22 2 0.90 68 1 0.45 111 3 1.35
23 1 0.45 69 4 1.80 113 1 0.45
25 3 1.35 70 1 0.45 114 1 0.45
28 1 0.45 71 2 0.90 | 115 1 0.45
31 3 1.35 72 2 0.90 118 2 0.90
32 1 0.45 74 2 0.90 119 1 0.45
33 2 0.90 75 1 0.45 120 4 1.80
34 1 0.45 77 2 0.90 121 3 1.35
35 4 1.80 78 3 1.35 123 3 1.35
36 2 0.90 80 4 1.80 124 3 1.35
37 1 0.45 82 2 0.90 125 3 1.35
38 6 2.70 83 3 1.35 133 5 2.25
39 7 3.15 84 2 0.90 137 1 0.45
40 5 2.25 85 3 1.35 138 1 0.45
42 3 1.35 86 2 0.90 139 1 0.45
45 2 0.90 87 3 1.35 143 2 0.90
46 2 0.90 88 3 1.35 146 1 0.45
47 1 0.45 89 3 1.35 148 1 0.45
48 2 0.90 90 1 1.35 159 1 0.45
49 3 1.35 91 2 0.90 167 1 0.45
52 1 0.45 92 3 1.35 171 1 0.45
53 3 1.35 93 2 0.90 172 2 6.90
54 1 0.45 94 1 0.45 173 1 0.45
55 3 1.35 95 2 0.90 174 1 0.45
56 2 0.90 96 1 0.45 181 2 0.90
57 1 0.45 97 2 1.35 183 1 0.45
58 1 0.45 o8 1 0.45 220 1 0.45
Table 3.3. Frequency Table by COUNTS.
COUNTS Frequency Percent
0 70 42.68
1 35 21.34
2 25 15.24
3 21 12.80
4 7 4.27
5 2 1.22
6 2 1.22
7 2 1.22
Sum 164 100.00




Figure 3.1! graphically illustrates the distribution of the setbacks. To obtain the
general trend in the data, we group seven day sets into weeks (ten days in the last period).
Since there was not enough data for 1999, it was pooled with 1998 data for display.

The peaks suggest time bottlenecks marking the student setbacks. In both of the
years 1996 and 1997, the peak value happened in the sixth week, but in the year 1998+99
it did not. Rather than having a common peak location for each year, the peaks move
back and forth. At this point, we do not know whether the cyclical effect is real, or
merely an artifact of randomness. The graphs may be misleading, because these peaks

move when we change the size of the grouping.

Figure 3.1 The Distribution of AS-6400 in COUNTS per Week

25 -

20 A

" COUNTS 15
\\/ \/\m\ \/,_f\,
N TR S

1 3 5 7 9 11 13 15 17 19 21 23_
Week g
emsmen Four Years Sum — - - — 1996 =— =—=1997 1998+99

Figure 3.1. The Distribution of AS-6400 in COUNTS per Week from 1996-to 1999.

! The data in year 1999 included five observations only, therefore we combine them into the year 1998 and
mark as 1998+99.




IV. MODEL FITTING

A. MODEL DESCRIPTION

We describe the observed setbacks using DAY as the sole explanatory variable.
The sequence of course days is divided into K intervals. Within an interval, the A is the
same for each day's Poisson distribution. Between intervals, the As can be different.

For example, if K=3 and suppose the total number days in a course is N=150, the
first interval could contain the first 60 days. The second interval could include the next
40 days, and the last piece includes the remaining 50 days. A different partition might
use intervals of lengths 34, 57, and 59.

The parameter A is the expected value of the response variable in a Poisson
process. It is the rate of the counts on a day and can be repersented as A = A(days) by a
mean value function, that is the function of the explanatory variables. Since the As are the
same for each day in an interval, the maximum likelihood estimator of the interval's A (the
Academic Setback rate) is equal to the sum of the setbacks divided by the number of days
in the interval.

To illustrate the idea of the explanatory variables DAY and interval, consider
Table 4.1 below, Figures 3.1, 4.1 and the output of program read.gam, which we will
discuss later. In Table 4.1, we sum the counts to get a response from the DAY 14 to 125,
which is around the 3™ to the 18" week in the Figure 3.1 as well as the 2" interval in

Figure 4.1. Then we divide the responses by the number of days in the interval

11
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Figure 4.1 The Five-Interval Policy of AS-6400 in 1996--1999

Rate 5 g ;
-(counts/interval) '

H

3

14 LR

0 ,
DAYs 8 125 12 13 164
Interval  1st 2nd Jrddth  Sth f

DAY/Interval

m—mean value

Figure 4.1. The Five-Interval Policy of AS-6400 in 1996-1999.

to get the average rate.

Note that the rate in Figure 3.1 varies from week to week but in Figure 4.1 it is a
constant within the chosen intervals. A week, being a fixed interval that slices the course
length mechanically, disguises the trend of the curve. Consequently, we model A(days)
as a simple step function and choose breakpoints by maximum likelihood. This will
follow the trend with variable length intervals, so that the As are constant over well-

selected intervals of days.

B. EXAMPLE

The course with CDP number 6400 is used as a tangible example to illustrate the
method. The course has N = 164 days. Let Y be a Poisson random response for a

particular day. Thus Y is the number of setbacks (the variable COUNTS) observed that
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day. The N days are partitioned into K intervals. It is convenient to describe the partition
by a set of breakpoints b;, j=1...K. The breakpoints are the indices of the last day in each
interval where the days are numbered consecutively from day 1 to day N.

The observed values of Y from Table 3.1 are y, =0, y,, = 3, and such. The course
is N=164 days long. Let K=5 for a five interval partition. Pick breakpoints at 13, 125,
132, 133, and 164.

Under these conditions we can calculate the number of days in each partition:
p=13, p,=125-13=112, p;=132-125=7, p,=133-132=1, and p,=164-133=31.

To calculate the maximum likelihood estimator A; for an interval, sum the
observed number of setbacks and divide by the number of days in the interval. For
example, for interval 5, the sum of occurrences is 1+1+1+2+1+1+1=8. The maximum

likelihood estimator of A is 8/31=0.258. Note that for both intervals 1 and 3, the A

estimate is 0.

C. METHOD

Let Y,...Yy be N independent Poisson random variables, one for each day in the
course. The days in the course are partitioned into K intervals and all of the Poisson
variables associated within an interval have a common parameter.

The partition can be described in two ways. Both are given because some of the
equations are greatly simplified by using one notation or the other.

Take p,...p, where p is the number of days in an interval. The sum of the p,

through p, is N.
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We take b,...b, as the breakpoints of each interval. The b;is the index of the last

element in interval j. The index starts from day 1. Note that b, =p,, b, = p, + p,, and so
on. The last breakpoint, b,, equals to N. To simplify notation later on, we define b, = 0.

The likelihood function of the saturated model is

J 4.1

The log-likelihood function of the saturated model is

Y

N N e"’n‘l}’i
L(y;4)= HP(y;/l)=H[ .
i=1 i=l 1

N N N

InL(y;A)==>. 4+ y,In4+> y! 4.2

i=1 i=1 i=1
For the Poisson regression model we have K intervals. Within an interval the

Poisson distribution for each day uses the same A. Let A" be the K sets of As of the

regression model, then the likelihood function of the regression model is

Z ;I):ﬁ_ﬁ 7 43

The log-likelihood of the regression model has the complex form

K K b; N
1nL(y;,1‘)=—ijzj+Z{(1nzj{ Zy,.]J+Zy,.! 4.4
J=1 J=1 i=b;+1 i
We want to select the partition, p;...p,, which maximizes the log-likelihood of the
regression model. Identifying best partition is computer intensive and is accomplished

using a program implementing the network shortest path algorithm. This was

accomplished with the help of Dennis Mar of the Systems Management Department and

15
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Professor Lawphonpanich of the Operations Research Department. An outline of the

method is presented in Appendixes A, B, and C.

The measures of goodness of fit of Poisson regression models are obtained from
the -‘comparison of maximized likelihood values. We use the deviance to produce
likelihood ratio tests for assessing the goodness of fit.

The log-likelihood ratio statistic has the form:

D(1)= —21n[ Ly ¥ )] 45

L(y;2)

where D(/f) is the deviance for the regression model

If the model is a valid one, then the D(/f) statistic has approximately a chi-square
distribution with N-K degrees of freedom. As the log-likelihood of the regression model
increases, the deviance statistic decreases. If the deviance is large and the chi-square

distribution test rejects the null hypothesis that the step function model is tenable. This is

evidence that the regression model does not fit.
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V. COMPUTATION AND ANALYSIS

A. COMPUTATION

This chapter traces the methodology of fitting the models to the data, and judging
goodness of fit. The steps are to maximize the log likelihood (or minimize the negative of
the log likelihood as that quantity is more directly related to the deviance statistic), and
use the Chi-square distribution to judge goodness of fit. Three programs are utilized: two
programs read2.gam and read.gam were created by Professor Lawphonpanich and a
SAS program was developed by Dennis Mar. The guidance for using these programs is
explained in the Appendix E.

The read2.gam (Appendix A) calculates the negative maximum log likelihood for
any K value specific interval policy, e.g. a three intervals policy, five intervals...etc. Its
output provides us output about the start numbers of intervals for that policy.

The read.gam (Appendix B) finds the best choice of contiguous intervals, such as
(13, 112, 17, 1, 31) for a five interval policy of AS in course 6400 from fiscal year 1996
to 1999. These are the interval lengths; the break points are DAY 13, 125, 142, 143, and
173. This is the best choice for a five interval policy.

The SAS program includes procedures Data Step and Deviance & Alpha (o)
Value Step. The data step selects and organizes data from the raw data and prepares

formatted data to the gam programs. Then the deviance & alpha value step computes the
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deviance and calculates the chi-square test statistic distribution upper tail confidence

level.

Tables 5.1, 5.2, 5.3, and 5.4, consolidating the outputs of AS course 6400 in 1998

from those three programs, are used to interpret the output, illustrate goodness of fit, and

analyze the output.

B. INTERPRETATION OF OUTPUT

Table 5.1 is the output of the read2.gam. The values in the first column signify
the number of intervals in the policy: three to 10. The values in the second column, is the
negative of the maximum log likelihood value. In the way that read2.gam calculates,
smaller is better. Comparing the difference of the value between three and four (2.59),
four and five (8.64), five and six (2.74) interval policy, the pair four and five has the
biggest change. This biggest marginal value in these three pairs suggests the five interval

policy is plausibly a reasonable first choice for the next step.

Table 5.1The Negative Maximum Log Likelihood of Various Interval Policy.

for AS6400_98

Value

66.5098
62.5889
0 59.9181

5
8
9
1
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Table 5.2 includes output of program Read.gam and SAS Deviance & Alpha

Value Step.

The Read.gam output shows the negative of the maximum log likelihood,
breakpoints, indicators and average rate of the partition. The negative of the maximum
log likelihood value is 73.6616, which is the same as Table 5.1, the five interval policy.
The first column noted as [s .D14], [D14 .D16] is the beginning and the ending day of
interval. § is the start day of the course and the D14 is the 14® day of the course...etc.
The 1% interval is from s to D14, the 2™ is from D14 to D16...etc. The breakpoints are
(b, by, bs, by, bs) = (14, 16, 77, 105, 164) and the lengths of intervals are (p,, p,, P3» Pas Ps)
= (14, 2, 61, 28, 59).

Table 5.2 The Best Five Intervals, Deviance and o Value of Chi-Square Test.

Five Partitions Policy
VARIABLE TOTCOST.L
PARAMETER output

73.6616 negative log likelihood

s .Dl4 1.0000 v

D14 .D16 1.0000 2.5000
D16 .D77 1.0000 0.1475
D77 .D105 1.0000 0.7857
D105 .D164 1.0000

The SAS System Output of 6400 AS 98 for 5 Partition Deviance & Alpha Value
Obs dev = . _Alpha
1 155.831  0.55624

The X column is a binary variable, which indicates whether an interval was
selected for the final model: 1 is for selected and O is not. The zeros do not appear in the
output. In our formulation of the problem only the included intervals are showed. The X

value is always 1 therefore we can ignore it.
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The A column is the average rate (1) for the interval. A missing value in the A
column implies 0. The average Academic Setback rate of partition [D14 .D15] is 2.5
counts for each day during this period of time.

In the SAS output of deviance and alpha value, the deviance is 155.831 and the o

value is 0.55624 with 159 degrees of freedom (=164 — 5, course length minus numbers of

intervals). The a value will be discussed more in the Goodness of Fit section....

C. GOODNESS OF FIT
Under the null hypothesis, H,: K partition model fits the observed data. The

distribution of the deviance statistic is Chi-square. Let o be the probability that the
deviance random variable is greater than or equal to the realized deviance statistic. At the
5% level of significance, calculated values of o greater thanv 0.05 supports the null
hypothesis. Consider five, three and seven interval policy first (Tables 5.2, 5.3 and 5.4).
The alpha (o) value indicates the probability that we would observe a deviance

value of that size or smaller when the null hypothesis is true. This alpha level is 0.06381

Table 5.3 The Best Three Intervals, Deviance and o Value of Chi-Square Test.

AS6400_98 1

Three Partitions Policy
VARIABLE TOTCOST.L
PARAMETER output

84.8867 negative log likelihood

X A
s .D77 1.0000 0.1818
D77 .D105 1.0000 0.7857
D105.D164 1.0000 0.1017

The SAS System output

6400_AS 98 for 3 Partition Deviance & Alpha Value
Obs dev

1 187.005
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for the best three interval policy, 0.55624 for the best five-interval policy, and 0.82357

for the best seven interval policy.

Table 5.4 The Best Seven Intervals, Deviance and o Value of Chi-Square Test.

Seven Partition Policy
VARIABLE TOTCOST.L
PARAMETER output

67.9204 negative log likelihood

X A

s .D14 1.0000

D14 .D1é6 1.0000 2.5000
D16 .D32 1.0000

D32 .D33 1.0000 2.0000
D33 .D77 1.0000 0.1591
D77 .D105 1.0000 0.7857
D105.D164 1.0000 0.1017

The SAS System Output
6400 AS 98 for 7 Partition Deviance & Alpha Value

Obs “dev ~_Alpha
1 140.482  0.82357

The results lead to a basic dilemma. How many intervals are suitable for the
analysis and requisite recommendations? This is a trade-off between the number of
intervals K and the goodness-of-fit statistic. The three-interval policy is desirable
because of its simplicity. But while its deviance value would not be rejected at the .05
levels, it is close. The practitioner could reasonable select between the five- and seven-
interval policies. For the remainder of this thesis, the seven-interval policy will be

studied.

D. ANALYSIS OF OUTPUT

We construct Figure 5.1 from the output of the seven interval policy for analysis

due to its higher confidence level. Referring to the figure, the 2™, the 4™ and the 6"
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intervals attract our attention more than others. This seven interval policy follows a low-
high pattern. The rates of setback are 0.00, 2.50, 0.00, 2.00, 0.16, 0.79, and 0.10. The 1%

and the 3" intervals consisting of 14 days and 16 days were near the beginning of the
course,where low setback rates are expected. The 2™ and the 4" consisting of two and
one days may reflect the learning problems from previous intervals which were not dealt

with until those particular days. Looking beyond the first four intervals, the last three

show up in the three interval style that we prefer.

Figure 5.1 The Seven-Interval Policy for AS of Course 6400 in

1998+99
4 x
' '
~ Rate3 } ]
2 :'
I T
0 e LA
DAYS 1416 33 n
Interval 1st 2nd 3rd dth 5th 6th
DAY/Interval
= Rate(estimated) — - - —Daily Count

Figure 5.1. The seven-interval policy of AS-6400 in 1998+.
Following the low-high pattern, the last three intervals exhibit a specified style:
increasing interval — high setback rate interval — decreasing interval. The 5™ interval

included 44 days, the 6" interval 28 days and the 7" interval 59 days. The 6" interval
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E. ADVANTAGES OF OUTPUT

Compare the daily count to the interval rate on the figure 5.1, the interval rate
simplifies the curve and our study. Taking advantage, we try to use the seven interval
policy to be our general policy. Its use is to identify common periods of time having a
commonality of concerns in the course.

Figure 5.2 consolidates the seven interval policy over the four years... The four-
year sum curve accumulates all contributions from the four years of data and displays
some stable rates except for the 3" interval (day 39 to 40) and the 6™ interval (day 133).
The rates in the 1% interval (0.00), the 5™ (0.00) and the 7™ (0.25) are approximately equal

as well as the rate in the 2 (1.75) and the 4™ (1.6353).

Figure 5.2 The Seven-Interval Common Policy for AS of Course 6400
from 1996 to 1999
7
Average 6 39
Rate 5 133
4
3 - [
E’ . 41 %
2T /= -
1 -‘ : : : ?{‘211! il?ﬂ!l’.’)& FEXLLHHIRAL
ixziess i FPPPRO ‘ 1%tamﬁm'l}fn nnnnnnn i’ = 3 ARG R R ARs
0 2
pay! 13 25 37 49 61 73 8 97 109 121 133 145 157
Interval It 2nd 3rd ith Sthéth  Tth
Day/Interval
| our years sum = * © = 1996 == 1997 *"**"199g, |

Figure 5.2. The Consolidated Common Policy of AS-6400.
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The rates in the 1* interval (0.00), the 5" (0.00) and the 7" (0.25) are approximately equal

as well as the rate in the 2™ (1.75) and the 4" (1.6353).

The consolidated figure gives us an advantage to know the common behavior of
the intervals when we compare them from year to year. Obviously the 3™ interval in the
four-year sum curve catches more significance than the 5" interval. At nearly the same
period of time, from day 32 to day 45, the rate rises promptly. This stage includes the 2™
interval for year 1997 with a stable rate 1.2581 in the long term day 13-88, the 2™ interval
for year 1996 with a rate 1.7143 during day 35-42 and the 4™ interval with a rate 2

on the day 32 for year 1998+99. Therefore, the days 32 to 45 of the course will have the

first priority for administrative attention.
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VI. CONCLUSIONS

To illustrate further how the developed method works; we test it on Academic
Attrition and Instruction Interruption (exclude Holiday Leave) of the course 6400. The

Table 6.1 displays the result.

Table 6.1. The Test Output of AA and II in Course 6400.

Read.gam output for AR6400 mix

82.0508 negative log likelihood

X A
s .Dz21 1.0000
D21.D91 1.0000 0.1857
D91.D164 1.0000 0.2877
The SAS System output for AA 6400 m
Obs dev Alpha
1 144.834 0.78277
The SAS System output for course II6400 m 7 partition
Obs dev Alpha
1 536.684 0
The SAS System output for course II16400 96 7 partition
Obs dev Alpha
1 588.022 0
The SAS System output for course II6400_97 7 partition
Obs dev Alpha
1 591.873 0
The SAS System output for course II6400 98 7 partition
Obs dev Alpha
1 471.576 0
The SAS System output for course II6400_98 7 partition
Obs dev Alpha
1 363.443 0

The three interval policy for academic attrition achieves a. = 78%. We do not to
reject the null hypothesis for Academic Attrition. The 3" interval is the interesting period

with the highest attrition rate. Turning to Instruction Interruption, the test rejects (o = 0)
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for the seven interval policy and all years. One must use more intervals for Instruction

Interruption in course 6400.

A. CONCLUSIONS

This study has applied the developed method on three categories of deadtime and in
course 6400 from 1996 to 1999: the Academic Setback, the Academic Attrition and the
Instruction Interrupt; and concludes with three results. First, the bottlenecks happen
approximately around the 32™ to 45™ day for the academic setback. Second, the
bottlenecks happen on 92™ and 93™ days for the academic attrition with 78% confidence.
Third, the Instruction Interrupt needs more than seven intervals to reach a satisfactory
Chi-square test. It is a candidate for the time homogeneous process.

The developed estimators detect the location of the weaknesses by course and
category of deadtime for a given data set. Since so many courses are taught and so many
categories of deadtime exist, it’s not possible to locate all of the possible problems with a
common model. Finding the location of the weakest point is always tﬁe first priority.

Recall that we assumed the deadtime incidence rate is constant if the course is in a
stable status. The developed estimator calculates rates from best choice intervals. Long

intervals indicate stability, short ones suggest a transient nature. This type of instability

needs further research.
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B. RECOMMENDATIONS

This thesis is a pilot study and the developed estimator provides a flexible tool for
the task. The possible future studies include:
e Develop a user-friendly program which executes the same function as this
thesis.
e Analyze the contribution and relationship of the reasons to deadtime in the -

concerned interval.
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APPENDIXES

APPENDIX A: READ2.GAM

This program calculates Maximum Log Likelihood value. The bold head prints
should be changed according to the length of the course, the name of the data file and the

numbers of interval for policies.
STITLE *Gameside’s Program for policy Log Maximum Likelihood

SOFFUPPER OFFSYMLIST OFFSYMXREF INLINECOM{ }

OPTIONS RESLIM = 900, ITERLIM = 100000
LIMCOL = 0, LIMROW = (0, DECIMALS = 4, SOLPRINT = OFF
OPTCR = 0.05
LP = 0OSL; {**OSL has a network solver**}

Set
i /s, D1*Dl64/
Parameters
y (i) /
$include as6400_D 98.prn
/i

Set arc(i,i);
Alias (i,3,k):

Scalar NGrp ;

Parameters
a(i,j) optimal a
c(i,j) obj value
b (i) ;

a(i,j)S$(ord(j) gt oxd(i)) =
sum(k$ (ord(k) gt ord(i) and ord(k) le
ord(j)),Y(k))/(ord(j) - ord(i));

c(i,j)S$(ord(j) gt ord(i)) = (ord(j) - ord(i))*a(i,j)
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- sum(k$ (ord(k) gt ord(i) and ord(k) le
ord(j)),Y(k))*log(a(i,j))$S

(a(i,j) gt 0);
arc(i,j) = YESS$(ord(j) gt ord(i)):;
b(i) = 1$(ord(i) eq 1) ~1S$(ord(i) eq card(i)):
*display c;
*POSITIVE VARIABLE
Binary Variable
X(i,3) amount of flows on each arc;

VARIABLE
TOTCOST negative log likelihood;

EQUATIONS

OBJ define objective function

FLOWBAL (i) flow conservation

numint;
K e o e e - e e — . — —— ————— i — — o — ——— i~ A —— — — — — — — —— " ——— —————————— o —— ———
OBJ.

TOTCOST =E= SUM((i,j)S$arc(i,j),c(i,]d)*X(i,3)):

FLOWBAL(I)..
SUM(]$arC(l,]) Ix(llj) )—SUM(]$arC(Jrl),X(]rl) )=E=b(l);

NUMINT..

sum( (i,3j)S$arc(i,j), X(i,3j)) =L= ngrp;
MODEL MCFLOW / ALL /;
Set iter /1*365/;

Parameter report(*,*), sol(i,j):
Scalar old /99999/;

Loop (iter$ (ord(iter) ge 3 and ord(iter) le 10),
ngrp = ord(iter);
solve mcflow using MIP minimizing TOTCOST;

report(iter, 'Value') = Totcost.l;
IF (totcost.l 1t (0ld-0.0001),
sol(i,j) = X.L(i,3):

old = totcost.l;
)i
) ;
option Y:2:0:1;
display report;
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APPENDIX B: READ.GAM

This program selects the best breakpoints of the interval under the maximum log

likelihood value. The bold head prints should be changed according to the length of the

course, the name of data file, and the number of interval.

SOFFUPPER OFFSYMLIST OFFSYMXREF INLINECOM{ }
OPTIONS RESLIM 900, ITERLIM = 100000
LIMCOL
OPTCR = 0.05
LP = 0OSL; {**OSL has a network solver**}

o

Set
i /s, D1*D164/
Parameters
y (i) /
$include as6400_D 98.prn
/:

Set arc(i,i):
Alias (i,3,k):;

Scalar NGrp ;

Parameters
a(i,j) optimal a
c(i,j) obj value
b (1) ;
a(i,j)$(ord(j) gt ord(i)) =
sum (k$ (ord(k) gt ord(i) and ord(k) le
ord(j)),Y(k))/(ord(j) - ord(i));

c(i,j)S$(oxrd(j) gt ord(i))
- sum(k$ (ord
ord(j)),¥(k))*log(a(i,j))

(k) gt ord(i) and ord(k)
$

(a(i,j) gt 0);
arc(i,j) = YESS$(ord(j) gt ord(i)):

0, LIMROW = 0, DECIMALS = 4, SOLPRINT

(ord(j) - oxd(i))*a(i,3)

le

= OFF




b (i) 1$(ord(i) eq 1) -1$(ord(i) eq card(i)):

*display c;
*POSITIVE VARIABLE

Binary Variable
X(i,j) amount of flows on each arc;

VARIABLE
TOTCOST negative log likelihood;

EQUATIONS

OBJ define objective function

FLOWBAL (i) flow conservation

numint;
K e e e = - e e e o - = — — ——————— A A —————————— T —— — > - — T ———— ———
OBJ.

TOTCOST =E= SUM((i,7)$arc(i,j),c(i,j)*X(i,3));
FLOWBAL(I)..

SUM(j$arc(i,j),X(i,j))-SuM(jSarc(j,1),X(J,1i))=E=b(i);
NUMINT. .
sum( (i, j)Sarc(i,j), X(i,3j)) =L= ngrp;

MODEL MCFLOW / ALL /:

ngrp = 5;

SOLVE MCFLOW USING MIP MINIMIZING TOTCOST;
DISPLAY TOTCOST.L;

parameter output(i,j,*):

XL(lIJ)' s

output (i,j,'X') = ;
output (i, j, 'A")$(X.L(1,]) = 1) =

sum (k$ (ord (k) gt ord(i) and ord(k) le
ord(j)),¥(k))/(ord(j) - ord(i)):

display output;
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APPENDIX C: SAS PROGRAM

1. Data Step

The Data Step of this program selects the desired data from the raw data. The
bold head prints should be changed according to the deadtime CATEGORY, CDP and
ENROLLFY of desired data, the course length, degree of freedom, and the breakpoints.

Data Step

*********************;

***%* Select data ****;
*********************;
data datal;
set diskh.spbsnum;
if category='AS';
if cdp ='6400"';
if enrollfy=1998;

*******************************************;

**** Count number of setbacks each day ****;
*******************************************;
Proc freq data=datal noprint;

table days / out=dataZ2;

weight count;
******************************************************;

**** Remove any data for any day greater than the ****;
**** maximum length of the course. Fkkk
******************************************************;
data data2;

set dataZz;

if days>164 then delete;

drop percent;
*********************************************************;

**** Create a data set where each observation is a day***;
****x of the course. ok
*********************************************************;
data data3;

do days=1 to 164;

output;
end;
**********************************************************;
***%* Add in the days with count=0 setbacks. KKk

***% "data3" has an entry for each day of the course. ****;
**********************************************************;
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data diskh.alldays;
merge data2 data3;
by days;

if count=. then count=0;
**********************************************************;

*Create a list of log factorials,1ln(0!) through 1In(100!),*;
**********************************************************;
proc print;

run;

2. Deviance & Alpha Value Step

The Deviance & Alpha Value Step of this program has to run with the Data Step
together to calculate the deviance and look up the Alpha value of Chi-square test
statistical distribution. The bold head prints should be changed according to the course

length, degree of freedom, and the breakpoints.

Deviance & Alpha Value Step

*khkkdhkhkhhkhdkhkhkhrhkkhhhkhkhhhkhkhddkdrhhhrhkhkhdhdkhrhbkhrhkhbkhkrddhkhhbhhhddhhhrx

x*x%** The incoming data set contains 164 observations. ***
**%** The variable COUNT for the ith observation is the ***
**%% total number of setbacks for the ith training day.***
%k Kk ok Kk ok ok Kk ok kg gk Sk ke ok %k Sk ke k% % %k %k Sk Sk ke %k ke ke ok ke Sk sk sk ok ek sk ok ke ok ok %k sk ke ok % ok ke ke ke ke ok ke ke ok ke ok
** The transpose procedure changes the arrangement of the*
** data set. The 164 observations of COUNT are converted*
** into a new data set with one observation *
*% and 164 variables dl through dlé4.

** The value, for example, of d34 is equal to the value
*% of COUNT in the 34th observation.

koK ok k ke ok ok ok kK Tk sk ke ok s sk ok ok ke e ok ok s sk Sk ke sk e ok ok Sk ok sk Tk ok ok ok sk ok ok ok o ok ok Sk ke ok ok ok ok ke ke ok

x*x% This reconfiguration is done soley because of the *
**** gtyle of syntax used by SAS. *

**********************************************************;

proc transpose data=diskh.alldays out=transp prefix=d;

var count;
* Kk * *

**** The variables are added: n (total days in course),
**x%* df (degrees of freedom of the chi-square,

*
*
*




* Kk ok

partition).

****;

data allpart;
set transp:

drop _name_

pl p2 p3 p4 pd

n = 164;

df 159;

pl = bl; bl = 14;
p2 = b2-bl; b2 = 16;
p3 = b3-b2; b3 = 77;
pd = bd-b3; b4 = 105;
p5 = b5-b4; b5 = 164;

(number of days in each piece of the

***********************************************************’.

** The ultimate goal in this data step is calculation of *;
** the "deviation" for the partition specified by pl *;
** through p5. *;
***********************************************************;
data allpart;

set allpart;

array ff(i) f1-f164;

array mm(i) ml-mlé64;
***********************************************;

****xx*  Calculate average setbacks of piece 1.%*;
***********************************************;
sumx=0;
do i =1 to pl;
sumx=sumx+ff;
end;
meanx=sumx/pl;
do i =1 to pl;
mm=meanx;

end;
****;*****************************************;

***% Calculate average setbacks of piece 2. *;
******************’****************************’-
sumx=0;
do i = pl+l to pl+p2;
sumx=sumx+£f£f;
end;
meanx=sumx/p2;
do i = pl+l to pl+p2;
mm=meanx;

end;
**********************************************;

**** Calculate average setbacks of piece 3. *;
**********************************************;
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sumx=0;

do i = pl+p2+1 to pl+p2+p3;
sumx=sumx+£ff;

end;

meanx=sunx/p3;

do i = pl+p2+1 to pl+p2+p3;
mm=meanx;

end;
***********************************************;

****x Calculate average setbacks of piece 4. *;
***********************************************;
sumx=0;
do i = pl+p2+p3+1 to pl+p2+p3+p4;
sumx=sumx+ff;
end;
meanx=sumx/p4;
do i = pl+p2+p3+1 to pl+p2+p3+p4;
mm=meanx;

end;
**********************************************;

**** Calculate average setbacks of piece 5. *;
**********************************************;
sumx=0; '
do i = pl+p2+p3+p4+1l to n;
sumx=sumx+ff; '
end;
meanx=sumx/p5;
do i = pl+p2+p3+p4+1l to n;
mm=meanx;

end; .
********************************************;

****x Calculate deviation which is -2 times *;
**** the log of the ratio of the likelihood*;

**%* of the hypothesized model and the *;
**%* }likelihood of the saturated model *
********************************************;

dev=0;
do i =1 to 164;
if ff LT 1.e-15 then dev= dev - (ff-mm);
else dev= dev + ff*log(ff/mm);

end;

dev = 2*dev;
****************************************************;

**** Calculate the cumulative probability for the *;
**** chi-square distribution from 0 to dev *;

**%* for df degrees of freedom. *;
****************************************************;
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alpha=1l-probchi (dev,df) ;
drop ml-ml164 fl1-ffle64;

************************************************;

**** Print the deviance and the Alpha. *;

************************************************;

proc print data=allpart:;
var dev alpha;
title "Five piece partition, category=AS cdp=6400
enrollfy=1998";
run;
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APPENDIX D: TEST RESULTS

AS6400 m 7P
VARIABLE TOTCOST.L =
PARAMETER output

90.6703 negative log likelihood

X A

s .D13 1.0000

D13 .D37 1.0000 1.7500
D37 .D40 1.0000 6.0000
D40 .D125 1.0000 1.6353
D125.D132 1.0000

D132.D133 1.0000 5.0000
D133.D164 1.0000 0.2581

The SAS System Output
Obs dev Alpha
1 341.205 0

AS6400_96 7P
VARIABLE ~TOTCOST.L =
PARAMETER output

of AS 6400 _mix for 7 Partition Dev & Alpha value

80.4718 negative log likelihood

X A

s .D35 1.0000

D35 .D42 1.0000 1.7143
D42 .D62 1.0000 0.2500
D62 .D63 1.0000 3.0000
D63 .D122 1.0000 0.4068
D122.D125 1.0000 1.6667
D125.D164 1.0000 0.1282

The SAS System Output
Obs dev Alpha
1 155.153 0.5267

AS6400_97_ 7P
VARIABLE TOTCOST.L =
PARAMETER output

of AS6400_96 7P for 7 Partition Dev & Alpha value

100.6404 negative log likelihood

X Y

s .D13 1.0000

D13 .D88 1.0000 1.2533
D88 .D119 1.0000 0.2581
D119.D125 1.0000 1.6667
D125.D132 1.0000

D132.D133 1.0000 3.0000
D133.D164 1.0000 0.0323

The SAS System Output
Alpha

Obs
1

dev
249.702

0

of AS6400_97 7P for 7 Partition Dev & Alpha value
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APPENDIX E: GUIDANCE for USING PROGRAMS

1. Preparing Data:

a. Selecting and organizing desired data (AS6400_98, Academic Setback of
course 6400 in 1998) by SAS Program Data Step (Appendix C) to produce
the following two dimensions output.

The SAS System Data Step Output from AS6400_98
DAY COUNT DAY COUNT DAY COUNT DAY COUNT DAY COUNT

| 1 0 34 0 67 0 100 3 133 2
| 2 0 35 0 68 0 101 0 134 0
3 0 36 0 69 1 102 0 135 0
4 0 37 0 70 0 103 1 136 0
5 0 38 0 71 0 104 1 137 0
6 0 39 0 72 0 105 1 138 1
7 0 40 0 73 0 106 0 139 ©
8 0 41 0 74 0 107 0 140 0
9 0 42 1 75 0 108 0 141 0
10 0 43 0 76 0 109 0 142 0
| 11 0 44 0 77 0 110 0 143 0
12 0 45 1 78 2 111 0 144 0
| i3 0 46 0 79 0 112 0 145 0
14 0 47 0 80 0 113 0 146 1
15 2 48 0 81 0 114 0 147 0
i6 1 49 0 82 2 115 0 148 0
17 0 50 0 83 0 116 0 149 0
18 0 51 0 84 0 117 0 150 0
19 0 52 0 85 1 118 2 151 0
20 0 53 1 86 2 119 0 152 0
21 0 54 0 87 0 120 0o 153 0
22 0 55 1 88 1 121 0 154 0
23 0 56 0 89 3 122 0 155 0
24 0 57 0 90 0 123 0 156 0
25 0 58 0 91 0 124 0 157 0
26 0 59 0 92 1 125 0 158 0
27 0 60 0 93 2 126 o 159 0
' 28 0 61 1 94 0 127 0 160 0
29 0 62 0 95 0 128 0 161 0
| 30 0 63 0 96 1 129 0 162 0
31 0 64 0 97 1 130 0 163 0
32 0 65 1 98 0 131 0 164 0
33 2 66 0 99 0 132 0

~
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b. Reorganizing the previous SAS Data output and saving in Formatted Text
(Space delimited) format for programs read2.gam and read.gam.

The input data of AS6400 D 98.prn for both read2.gam and read.gam

D1 0 D34 0 D67 0 D100 3 D133 2
D2 0 D35 0 D68 0 D101 0 D134 0
D3 0 D36 0 D69 1 D102 0 D135 0
D4 0 D37 0 D70 0 D103 1 D136 0
D5 0 D38 0 D71 0 D104 1 D137 0
D6 0 D39 0 D72 0 D105 1 D138 1
D7 0 D40 0 D73 0 D106 0 D139 0
D8 0 D41 0 D74 0 D107 0 D140 0
D9 0 D42 1 D75 0 D108 0 --D14%a = 0
D10 0 D43 0 D76 0 D109 0 D142 0
D11 0 D44 0 D77 0 D110 0 D143 0
Dl2 0 D45 1 D78 2 D111 0 D144 0
D13 0 D46 0 D79 0 D112 0 D145 0
D14 0 D47 0 D80 0 D113 0 D146 1
D15 4 D48 0 D81 0 D114 0 D147 0
D16 1 D49 0 D82 2 D115 0 D148 0
D17 0 D50 0 D83 0 D116 0 D149 0
D18 0 D51 0 D84 0 D117 0 D150 0
D19 0 D52 0 D85 1 D118 2 D151 0
D20 0 D53 1 D86 2 D119 0 D152 0
D21 0 D54 0 D87 0 D120 0 D153 0
D22 0 D55 1 D88 1 D121 0 D154 0
D23 0 D56 0 D89 3 D122 0 D155 0
D24 0 D57 0 D90 0 D123 0 D156 0
D25 0 D58 0 DO1 0 D124 0 D157 0
D26 0 D59 0 D92 1 D125 0 D158 0
D27 0 D60 0 D93 2 D126 0 D159 0
D28 0 D61 1 D94 0 D127 - 0 D160 0
D29 0 D62 0 D95 0 D128 0 D161l 0
D30 0 D63 0 D96 1 D129 0 Dle62 0
D31 0 D64 0 D97 1 D130 0 D163 0
D32 0 D65 1 D98 0 D131 0 D164 0
D33 2 D66 0 D99 0 D132 0

2. Calculating Maximum Negative Log Likelihood

The program read2.gam (Appendix A) wuses the formatted data
AS6400_D 98.prn as input to calculate the maximum negative likelihood of different

policy. The following is an example output.
The output of read2.gam for as6400_D 98.prn

Value
84.8867
82.2978
73.6616
70.9237
67.9204

Noows Ww
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8 66.50098
9 62.5889
10 59.9181

3. Selecting Best Choice of Partition

The program read.gam (Appendix B) uses the formatted data AS6400_D_98.prn
as input to select best policy combination. The following is an example output.

The output of read.gam for as6400_D 98.prn

VARIABLE TOTCOST.L = 73.6616 negative log likelihood
PARAMETER output neto c
X A
s .D14 1.0000
D14 .Dleé 1.0000 2.5000
D16 .D77 1.0000 0.1475
D77 .D105 1.0000 0.7857
D105 .Dl164 1.0000

4. Calculating Deviance & Alpha Value

The SAS program (Appendix C) Deviance & Alpha Value Step use first column
of read.gam output which is the index of best choice as input to calculate deviance and
look up Alpha value. The following is an example output.

The SAS System Output of AS6400_98
for 5 Partition Deviance & Alpha Value

Obs dev Alpha
1 155.831 0.55624
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